Articles about Optics and Photonics, Lasers, Fiber Bragg gratings and FBG sensors

Portable fiber laser favors better fiber optic sensors

on January 17, 2020

vividA Chinese team of researchers has created a new twist on fiber optic sensors that promote the development of a smart flexible photoacoustic imaging technique, which is regarded as a way to enlarge new applications in portable devices, instrumentation, and medical diagnostics.

The operation of the new ultrasound sensor is based on fiber lasers that rely on fiber optic technology to manufacture fiber sensors for photoacoustic imaging. To be more precise, these fiber laser systems apply fiber optic ultrasound determination, utilizing the acoustic effects on laser beam pulses via the thermoelastic effect (temperature changes).

The thing is that traditional fiber optic sensors trace very weak signals due to their high sensitivity via phase measurement. Herewith, this type of fiber sensors can be employed in military purposes to find low-frequency (kilohertz) acoustic waves. Nevertheless, they provide weak operation for “ultrasound waves at the megahertz frequencies used for medical applications because ultrasound waves usually propagate as spherical waves and have a very limited interaction length with optical fibers”.

It should be noted that the main application of the novel fiber sensors is medical imaging, herein, they offer better sensitivity than the piezoelectric transducers in use today. Components of a special ultrasound fiber optic sensor include a portable fiber laser set in the 8-micron-diameter core of a single-mode optical fiber. A standard length of the fiber optic system is only 8 millimeters. 

The team uses two highly reflective fiber Bragg grating mirrors written into the fiber core to achieve optical feedback to manufacture the fiber laser. Then they dope the optical fiber with ytterbium and erbium to result in efficient optical gain at 1,530 nanometers. Additionally,  a 980-nanometer semiconductor laser operates as the pump laser.

The applications of such fiber laser systems with a kilohertz-order linewidth (the width of the optical spectrum) can include their use as fiber sensors, so they provide a high signal-to-noise ratio. Also, ultrasound detection takes advantage of the combined methods because side-incident ultrasound waves spoil the optical fiber, modulating the laser beam frequency.

The fiber optic sensors based on fiber lasers are highly promising for application in photoacoustic microscopy. The team applies a 532-nm nanosecond pulsed laser to illuminate a sample and excite ultrasound signals leading to a photoacoustic image of the vessels and capillaries. Moreover, it is possible to use the fiber optic system for structural imaging of other tissues and functional imaging of oxygen distribution by employing other excitation wavelengths.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorPortable fiber laser favors better fiber optic sensors

Laser-based fiber optic sensors find cancer biomarker

on January 10, 2020

chipA team of researchers from the Netherlands has developed a chip-based fiber optic sensor with an integrated laser system to allow finding low levels of a cancer protein biomarker in a urine sample. The thing is that such fiber sensing technology is considered to offer more sensitivity than previous techniques, resulting in noninvasive, inexpensive fiber sensing ways to identify molecules that are responsible for the presence or progression of a disease.

To be more precise, such a fiber optic sensor enables researchers to make label-free detection of S100A4 that is regarded as a protein connected with human tumor development at clinically relevant levels.  According to the team, fiber sensing technology promotes faster and more sensitive findings of tumor biomarkers, which favor faster treatment and better results. 

The principle of fiber sensor operation is based on “the detection of specific molecules by illuminating the sample with an on-chip microdisk laser system, made with aluminum oxide”. Thus, it is possible to use aluminum oxide doped with ytterbium ions to manufacture a fiber laser that emits in a wavelength outside the laser beam light absorption band of water, while still allowing the accurate finding of biomarkers. Herewith, the frequency or color of the laser beam changes in a detectable way when there is its interaction with the biomarker under consideration.

The laser pump light equipped to the fiber optic sensor performs lasing in a micron into the resonator. Herein, fiber probes are held on the resonator surface capturing the required analytes. Then the laser beam in the ring goes through the fluid, and the attachment of required analytes shows the frequency shifting of laser system emission. Finally, it is possible to accurately measure this shift allowing the detection of minute amounts of analytes flowing over the fiber sensor in a “specific” way.

Despite the fact that fiber optic sensors that monitor laser frequency shifts are not novel, they are often regarded as not easily installed on small, disposable photonic chips, while aluminum oxide can be easily manufactured monolithically on-chip, herewith, it is compatible with conventional electronic manufacture procedures. Such fiber lasers enlarge their opportunities due to unprecedented sensitivity because of much narrower laser beam linewidth than the resonances of passive ring resonators. When other noise sources are overcome, this fiber sensing will enable the finding of minute frequency shifts from biomarkers at very low concentrations.

The developed fiber optic sensor has been already tested in complex liquids such as urine resulting in the detection of S100A4 at concentrations as low as 300 picomolar. Nowadays it is planned to integrate all the relevant optical sources and signal generation components onto the chip to make the fiber sensor even simpler to operate.

Optromix is a manufacturer of innovative fiber optic products for the global market. The company provides the most technologically advanced fiber optic solutions for the clients. Optromix produces a wide range of fiber optic devices, including cutting-edge customized fiber optic Bragg grating product line and fiber Bragg grating sensor systems. Moreover, Optromix is a top choice among the manufacturers of fiber Bragg grating monitoring systems. If you have any questions, please contact us at info@optromix.com

read more
editorLaser-based fiber optic sensors find cancer biomarker

Fiber laser treatment of kidney stones

on December 11, 2019

medicalThe treatment of kidney stones are regarded as a painful process, however, specialists from the U.S. have developed a laser technology to make the therapy easier for patients in a way never done before. According to specialists, a two-month test makes the medical center the first in North America to apply pulsed fiber laser to take away kidney stones.

The development of this laser technology takes a couple of years on the project, that is why the specialists try to make Ohio State the first to employ it, as it already had some experience. To be more precise, specialists started developing the opportunity of applying this type of fiber laser system for urology in early 2015. By mid-2017, certain benefits of the new laser technology in over to the conventional state of the art were distinguished.

The fiber laser leads to kidney stones’ breakage into tiny pieces, herewith, such laser system is considered to be more consistent compared with the traditional laser technology. The operating principle is based on laser beam energy that breaks up the stones: “Once we get to the stone, the laser beam energy is delivered through an optical fiber that’s brought into contact with the stone. Once you’re touching the stone, activate the fiber laser system, and it delivers pulses of energy to the stone that breaks it up.”

The main benefit of such fiber laser treatment is a short time of breakage resulting in less required time under anesthetic and a faster recovery for patients. The thing is that the previous laser systems applied for kidney stone procedures are dated, they have been used for about 20 years and had numerous limitations, while modern pulsed fiber laser is one of the biggest breakthroughs in urology. The developed fiber laser meets the scientist’s expectations, it allows breaking up really big stones that it was difficult to treat with the older laser system.

Additionally, there is no often need for stents because the new fiber laser system enables to efficiently break the stones into tiny parts and dust. It should be noted that a stent is a temporary tube between the kidney and the bladder that helps the kidney drain, herewith, it provides discomfort to patients and requires an additional procedure of its removing.

Also, the pulsed fiber laser offers other advantages for medical staff, for instance, it is smaller and more portable than the previous model that required a special outlet in operating rooms. The main goal of the fiber laser development is to help physicians get better clinical outcomes for patients. Thus, the laser system is planned to be used in areas of the hospital where traditionally haven’t been used before.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorFiber laser treatment of kidney stones

QCL laser systems can emit terahertz radiation for the U.S. army

on December 6, 2019

army helicopterA team of researchers from Boston has developed a new terahertz radiation source with coveted frequency adjustment capability based on quantum cascade laser system (QCL). Such a laser system has a compact size and it allows the development of futuristic communications, security, biomedical, and astronomical imaging systems.

It should be noted that terahertz electromagnetic frequencies emitted by fiber lasers have been widespread for their range of applications because these laser systems offer such advantages as high bandwidth, high resolution, long-range sensing, and ability to visualize objects through materials. Nevertheless, the costliness, bulk, inefficiencies, and lack of tunability of traditional terahertz laser beam sources have limited growing markets.

Thus, this new combined terahertz laser beam emitter promotes future technologies from T-ray imaging in airports and space observatories to ultrahigh-capacity wireless connections. To be more precise, current fiber laser systems are considered to have limited tunability (less than 15 to 20% of the main frequency), that is why terahertz radiation is rarely used.

The researchers confirm that the new laser system helps open up this spectral region resulting in a revolutionary impact. The laser technology is based on a compact tunable semiconductor laser system, the quantum cascade laser (QCL) that is frequently used for chemical sensing and trace gas analysis. The thing is that the QCL laser system emits mid-infrared light, herewith, in this spectral region, most gases (low concentrations of molecules) can be determined by their specific absorption fingerprints.

According to researchers, “Terahertz waves could be emitted with high efficiency from gas molecules held within cavities much smaller than those currently used on the optically pumped far-infrared (OPFIR) laser system — one of the earliest sources of terahertz radiation”.

Nevertheless,  the OPFIR laser systems are similar to all traditional terahertz laser beam sources, that is why they are regarded as inefficient with limited tunability. The change of the OPFIR laser on the quantum cascade laser system significantly increases the terahertz tuning range, therefore, the developed laser module has wider tunability now.

This laser system has been already tested and demonstrates the opportunity to tune the terahertz output to emit 29 direct laser beam transitions between 0.251 and 0.955 THz. The laser technology is universal, and it can be used to detect different gases. It is planned to use the developed laser system to observe skyward and determine unknown spectral features in the terahertz region.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry. 

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily-automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

read more
editorQCL laser systems can emit terahertz radiation for the U.S. army

Ytterbium doped fiber lasers for spontaneous emission

on November 29, 2019

rays-1200800_640A team of researchers presents a new random noise pulsed regime provided by a ytterbium doped fiber laser. Herewith, the output of the ytterbium laser complies with the photon statistics common to narrowband amplified spontaneous emission resulting in the noise pulsing in terms of probability density and autocorrelation functions. The new fiber laser technique demonstrates that the increase of ytterbium doped laser leads to a prominent decrease in the regime’s coherence time (from few ns to tens ps).

Fiber laser systems are regarded as highly promising tools that have a wide range of commercial applications. Fiber lasers are used as light sources in fully fiberized optical schemes with no any free-space components, herein, they offer a high level of optical and electrical to optical conversion efficiency. Additionally, fiber laser systems have various operating regimes, “characterized by narrow (from a tens Hz) to a very large optical band, in continuous-wave (CW) and pulsed regimes including Q-switched, mode-locking and soliton operations where the pulse width is ranged from hundreds of nanoseconds down to tens of femtoseconds”.

Ytterbium doped fiber lasers are considered to have such a benefit as an excellent power budget thanks to the absence of excited-state absorption. Nevertheless, ytterbium doped lasers have a disadvantage that influences their efficiency: there is a specific broadening of the laser line in the case when the cavity of fiber laser is made from FBG couplers. Thus, the partial leakage of fiber laser power occurs on a highly reflective fiber Bragg gratings.

The output power of ytterbium doped fiber lasers may vary from several watts to tens kW or even a few hundred kW depending on single-mode and multimode operations. It should be noted that the low cavity Q-factor of ytterbium lasers causes high fiber laser gain, and the regime of the laser system is changed on random kW pulses resulting in Brillouin scattering.

The researchers confirm that the operation of ytterbium doped lasers happens in a noise pulse regime with random magnitudes and widths (not in the CW regime). Moreover, there is a dependence between the fiber laser photon statistics and laser beam power (and hence on laser linewidth), thus, its behavior reminds that of narrowband ASE. For instance, several high-amplitude noise events with low probability achieve powers more than the mean laser beam power.

Finally, the developed laser system has been already tested and shows that the laser spectrum’s width becomes higher with increasing output power while the rate of the ytterbium laser process at lower output powers is lower than at higher one, taking into consideration the fact that the nonlinear optical fiber length is considerably shorter than the cavity one.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorYtterbium doped fiber lasers for spontaneous emission

Ultrashort-pulse laser system oscillators

on November 22, 2019

laser-11646_640Physicists from Switzerland have developed a sub-picosecond thin-disk laser system oscillator that performs a record-high 350-watt average output laser beam power resulting in a new standard for the creation of more powerful fiber lasers. Herewith, ultrafast laser beam sources are at the center of fundamental scientific researches and industrial applications of fiber laser systems, including high-field physics experiments with attosecond temporal resolution to micrometer-accuracy machining of materials.

Nonetheless, repetition rates of several megahertz and average output powers of hundreds of watts remain still required from laser systems to put the envelope forward. The most promising way to performing such high-power laser beam sources is to produce them by increasing the power output from fiber laser oscillators rather than applying multi-stage amplifiers because of their complexity. The thing is that power increasing results in reliable and potentially cost-effective fiber laser systems.

The physicists have recently put the power-scaling approach to a new level. To be more precise, they offer a laser beam source that provides both the simplicity and high repetition rates of laser system oscillators with record-high average output power from this type of fiber laser. The researchers use a thin-disk laser system oscillator as the base, “where the gain medium, the material in which the quantum processes leading to lasing take place, is shaped like a disk of around 100 micrometers thin”.

The thing is that the shape of such laser systems provides a relatively big surface area that favors cooling. Nevertheless, thermal effects remain the main disadvantage because of which the record output laser beam power was considered to be at 275 watts. At present, several advances in thin-disk laser technology enable the physicists to reach an average output power of 350 watts, with laser beam pulses that are only 940 femtoseconds long, they have an energy of 39 microjoules and repeat at a 8.88-megahertz rate. It should be noted that these parameters are the subject of constant interest in both scientific and industrial applications.

Finally, the physicists have succeeded in the development of a technique that allows several passes of the pump laser beam through the gain medium without inflicting detrimental thermal effects, therefore, decreasing the stress on the relevant components. The opportunity to check thermal effects make it possible to overcome the limitations of the 275-W level. Moreover, it is planned to use these laser system oscillators for the future achievement of 500 W or even higher.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry. 

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily-automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

read more
editorUltrashort-pulse laser system oscillators

Ultrafast laser beam pulses demonstrate a previously unseen matter phase

on November 15, 2019

light-579290_640A team of researchers from the U.S. performs experimentы with ultrafast laser beam pulses that allow creating a previously unseen phase of matter. For instance, adding energy to any material almost always change its structure. However, new experiments by laser systems demonstrate the opposite: “when a pattern called a charge density wave in a certain material is hit with a fast laser beam pulse, a whole new charge density wave is created—a highly ordered state, instead of the expected disorder.”

The thing is that such laser technology may reveal hidden features in materials of all types. The researchers perform the experiment with ultrafast laser beam pulses by applying lanthanum tritelluride material that naturally changes into a layered structure. It should be noted that a wavelike pattern of electrons in high- and low-density areas creates spontaneously in the material, however, it is limited by a single direction within him.

Herewith, an ultrafast burst of laser beam light (less than a picosecond long) leads to the obliteration of the previous pattern and the creation of a new one. To be more precise, the novel pattern produced in the result of the laser system process is regarded as something that has never been observed before in this material. This pattern appears for only a flash, vanishing within a few more picoseconds.

It is not a discovery that matter can have two possible competitive states and that the dominant mode can suppress alternative modes. The laser technology, in its turn, reveals that different types of matter can have latent states lurking unseen if a technique will be found to restrain the dominant state. It is possible to see by using ultrafast laser beam pulses at these competing states that are considered to have equivalent crystal structures due to the predictable, orderly patterns of their subatomic constituents.

The opportunity of laser systems that suppressing other phases of matter may reveal completely new material features uncovers numerous new areas of application. This is the reason why it is highly necessary to discover material phases that can only be out of equilibrium. To be more precise, what is meant here is material states that would never be achieved without a technique, such as this system of laser beam pulses, for suppressing the dominant phase.

Traditionally, researchers transform chemical changes, or pressure, or magnetic fields to change the material phase, while now they apply laser beam light to perform these transformations. Finally, the results of laser technology may enable to better understand the role of phase competition in other systems resulting in discovering higher-temperature superconductors and finding out why superconductivity appears in some materials at relatively high temperatures.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorUltrafast laser beam pulses demonstrate a previously unseen matter phase

Production of optical fiber preforms by 3D printing

on November 8, 2019

3d-791205_640A new technique of 3D printing application has been developed to produce optical fiber preforms that are commonly used as the backbone of the global telecommunications network. It is planned that this fiber optic technology allows not only making the optical fiber production easier but also open up new designs and applications that were impossible before.

The thing is that the traditional creation of silica optical fibers is based on “the labor-intensive process of spinning tubes on a lathe, which requires the fiber’s core or cores to be precisely centered”. Nevertheless, modern fiber optic technology does not require to center the fiber geometry resulting in the overcome of some optical fiber limitations in design and the reduction of manufacture cost.

A group of researchers from Australia has succeeded to make the first silica optical fibers by 3D printing. It should be noted that the 3D printing technique for optical fiber manufacturing may change the entire approach to fiber optic design and goal. For instance, it is possible to enlarge the applications of fiber optic sensors that significantly overpass their electronic equivalents relatively to longevity, calibration, and maintenance, however, fiber sensors haven’t been widely employed because of their expensive fabrication.

Herewith, the developed fiber optic technology is based on the previous work in which polymer material was applied to show the first optical fiber produced from a 3D printed preform. Nevertheless, this research faced several material problems including the high temperatures (higher than 1900 °C) required to 3D print optical fibers.

New optical fibers are produced by unique heating step (debinding) to take away the polymer and leave behind only the silica nanoparticles, which are put together by intermolecular forces. Then the nanoparticles transform into a solid structure by raising the temperature, therefore, it could be installed into a draw tower where it is heated and pulled to produce the optical fiber.

Finally, the new technique enables the researchers to create a preform equivalent of a traditional optical fiber that could be employed to produce multi- or single-mode fibers, depending on drawing conditions. The researchers confirm that this fiber optic technology demonstrates great results and can be used for a large variety of fiber optic material processing. Additionally, the production of optical fiber preforms by 3D printings is regarded to be a possible opportunity to replace the traditional methods of making optical fibers. Thus, not only fabrication and material costs of fiber optics but also labor costs will be reduced.

Optromix is a provider of top quality special fibers and broad spectra optical fiber solutions. The company delivers the best quality special fibers and fiber cables, fiber optic bundles, spectroscopy fiber optic probes, probe couplers and accessories for process spectroscopy to clients. If you have any questions or would like to buy an optical fiber product, please contact us at info@optromix.com

read more
editorProduction of optical fiber preforms by 3D printing

Fiber laser system en bloc resection of bladder tumors

on November 1, 2019

surgery-1807541_640Bladder cancer is considered to be the second most widespread urological cancer in adults and the seventh most general diagnosis of cancer in males. This type of cancer is traditionally treated by fiber laser transurethral resection. The operating principle of such a fiber laser system is based on the surgical removal of a bladder tumor from the bladder wall. 

Compared to fiber laser technology, traditional techniques face several morphological difficulties and complications, for instance, possible cancer recurrence (about 60-70% of cases), detrusor muscle presence (30-60%), inability to precisely separate the tumor causing to lamina propria damage, potential tumor seeding, or incomplete resection.

Nowadays the thulium technology, based on fiber laser systems, is regarded as a new laser technique in prostate ablation onto the urological sphere. The fiber laser technology provides such benefits as the opportunity to transmit a high energy output from a relatively small optical fiber core. Compared to Holmium laser systems operating at infrared wavelengths more than 2.000 nm, “Thulium fiber lasers operate at wavelengths of 1,908 nm and 1,940 nm, two wavelengths that match more closely with water’s optimal absorption peak”.

Thus, the fiber laser system provides a much more accurate resections of bladder cancer. The surgery by fiber lasers has been already tested and demonstrates great results. To be more precise, fiber laser technology shows its high efficiency in cases with complicated tumor locations and abnormal anatomies, for example, bladder dome tumors, tumors placed in close proximity to the ureteral orifice, and tumors that cover the ureteral orifice.

Additionally, clinical and laboratory researches of fiber lasers improve the morphological diagnostic criteria for NMIBC and give the required information about the specimen quality after thulium laser system resection and traditional transurethral resection of bladder tumor techniques.

Finally, the en bloc resection technique by fiber laser system enables to minimize coagulation of the tumor base and urothelium along resection margins resulting in the complete impossibility of any tumor mass coagulation. Also, it should be mentioned that during fiber laser surgery all bladder layers remain saved from an intact specimen, therefore, saving the differentiation from the tumor and its base. Such fiber laser technology plays a crucial role, since laser system surgery may enable to choose a more correct and appropriate treatment strategy for bladder cancer diagnoses in the future.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorFiber laser system en bloc resection of bladder tumors

Lithography application of ultrafast fiber lasers for smart cloth

on October 25, 2019

laser-2819143_640Recently waterproof energy-storing cloth for smart garments was developed on the basis of carbon-dioxide and ultrafast fiber lasers. Researchers from Australia offer cost-efficient and scalable fiber laser technology that allows fast fabricating textiles with energy-storage devices installed inside them. The technology based on CO2 laser system and ultrafast laser can produce a 10 × 10 cm smart-textile patch that has such benefits as waterproofing, stretchability, herewith, it can be easily integrated with energy-harvesting technologies.

To be more precise, the fiber laser technology promotes graphene supercapacitors (energy-storage devices) to be printed by laser systems directly onto textiles such as nylon. The principle of the technology is based on the combination of a supercapacitor printing by a fiber laser and a photovoltaic cell to create an efficient, washable, self-powering smart fabric. Additionally, the researchers confirm that such a laser system is able to overcome the main disadvantages of current e-textile energy-storage technologies.

It should be noted that the popular smart-fabrics industry finds numerous laser applications in wearable devices for “the consumer, healthcare, and defense sectors, including monitoring vital signs of patients, tracking the location and health status of soldiers in the field, and monitoring pilots and drivers for fatigue”. The most widespread laser system application is considered to be laser lithography.

The thing is that the researchers put an elastomer solution (polydimethylsiloxane) on one side of nylon textile while a solution of graphene oxide and binder is coated onto the other and dried to form a film 3 μm thick. Then CO2 laser and femtosecond laser is used to form the fabric. The carbon laser performs photothermal reduction, while the ultrafast fiber laser achieves a combination of photothermal and photochemical reduction. Thus, the researchers succeeded to produce supercapacitor electrodes 10 μm thick over an area of 100 cm2 with an interelectrode distance of 80 μm with the help of fiber laser systems.

Herewith, the laser beam power of 4.5 W up to 8 W is used for the photoreduction process. Finally, the researchers discovered that after washing and drying the resulting graphene-enhanced cloth 50 times in commercial laundering machines, the electrical conductivity of the thin film, produced by CO2 and ultrafast fiber lasers, remains virtually unchanged compared with its initial state.

It is planned that the fiber laser technology allows real-time storage of renewable energy for e-textiles, as well as a faster roll-to-roll fabrication based on multifocal fabrication and machine learning techniques. If you are looking for a fiber laser of high beam quality, you should choose the Optromix company.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorLithography application of ultrafast fiber lasers for smart cloth