Articles about Optics and Photonics, Lasers, Fiber Bragg gratings and FBG sensors

QCL laser systems can emit terahertz radiation for the U.S. army

on December 6, 2019

army helicopterA team of researchers from Boston has developed a new terahertz radiation source with coveted frequency adjustment capability based on quantum cascade laser system (QCL). Such a laser system has a compact size and it allows the development of futuristic communications, security, biomedical, and astronomical imaging systems.

It should be noted that terahertz electromagnetic frequencies emitted by fiber lasers have been widespread for their range of applications because these laser systems offer such advantages as high bandwidth, high resolution, long-range sensing, and ability to visualize objects through materials. Nevertheless, the costliness, bulk, inefficiencies, and lack of tunability of traditional terahertz laser beam sources have limited growing markets.

Thus, this new combined terahertz laser beam emitter promotes future technologies from T-ray imaging in airports and space observatories to ultrahigh-capacity wireless connections. To be more precise, current fiber laser systems are considered to have limited tunability (less than 15 to 20% of the main frequency), that is why terahertz radiation is rarely used.

The researchers confirm that the new laser system helps open up this spectral region resulting in a revolutionary impact. The laser technology is based on a compact tunable semiconductor laser system, the quantum cascade laser (QCL) that is frequently used for chemical sensing and trace gas analysis. The thing is that the QCL laser system emits mid-infrared light, herewith, in this spectral region, most gases (low concentrations of molecules) can be determined by their specific absorption fingerprints.

According to researchers, “Terahertz waves could be emitted with high efficiency from gas molecules held within cavities much smaller than those currently used on the optically pumped far-infrared (OPFIR) laser system — one of the earliest sources of terahertz radiation”.

Nevertheless,  the OPFIR laser systems are similar to all traditional terahertz laser beam sources, that is why they are regarded as inefficient with limited tunability. The change of the OPFIR laser on the quantum cascade laser system significantly increases the terahertz tuning range, therefore, the developed laser module has wider tunability now.

This laser system has been already tested and demonstrates the opportunity to tune the terahertz output to emit 29 direct laser beam transitions between 0.251 and 0.955 THz. The laser technology is universal, and it can be used to detect different gases. It is planned to use the developed laser system to observe skyward and determine unknown spectral features in the terahertz region.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry. 

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily-automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

read more
editorQCL laser systems can emit terahertz radiation for the U.S. army

Ytterbium doped fiber lasers for spontaneous emission

on November 29, 2019

rays-1200800_640A team of researchers presents a new random noise pulsed regime provided by a ytterbium doped fiber laser. Herewith, the output of the ytterbium laser complies with the photon statistics common to narrowband amplified spontaneous emission resulting in the noise pulsing in terms of probability density and autocorrelation functions. The new fiber laser technique demonstrates that the increase of ytterbium doped laser leads to a prominent decrease in the regime’s coherence time (from few ns to tens ps).

Fiber laser systems are regarded as highly promising tools that have a wide range of commercial applications. Fiber lasers are used as light sources in fully fiberized optical schemes with no any free-space components, herein, they offer a high level of optical and electrical to optical conversion efficiency. Additionally, fiber laser systems have various operating regimes, “characterized by narrow (from a tens Hz) to a very large optical band, in continuous-wave (CW) and pulsed regimes including Q-switched, mode-locking and soliton operations where the pulse width is ranged from hundreds of nanoseconds down to tens of femtoseconds”.

Ytterbium doped fiber lasers are considered to have such a benefit as an excellent power budget thanks to the absence of excited-state absorption. Nevertheless, ytterbium doped lasers have a disadvantage that influences their efficiency: there is a specific broadening of the laser line in the case when the cavity of fiber laser is made from FBG couplers. Thus, the partial leakage of fiber laser power occurs on a highly reflective fiber Bragg gratings.

The output power of ytterbium doped fiber lasers may vary from several watts to tens kW or even a few hundred kW depending on single-mode and multimode operations. It should be noted that the low cavity Q-factor of ytterbium lasers causes high fiber laser gain, and the regime of the laser system is changed on random kW pulses resulting in Brillouin scattering.

The researchers confirm that the operation of ytterbium doped lasers happens in a noise pulse regime with random magnitudes and widths (not in the CW regime). Moreover, there is a dependence between the fiber laser photon statistics and laser beam power (and hence on laser linewidth), thus, its behavior reminds that of narrowband ASE. For instance, several high-amplitude noise events with low probability achieve powers more than the mean laser beam power.

Finally, the developed laser system has been already tested and shows that the laser spectrum’s width becomes higher with increasing output power while the rate of the ytterbium laser process at lower output powers is lower than at higher one, taking into consideration the fact that the nonlinear optical fiber length is considerably shorter than the cavity one.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorYtterbium doped fiber lasers for spontaneous emission

Ultrashort-pulse laser system oscillators

on November 22, 2019

laser-11646_640Physicists from Switzerland have developed a sub-picosecond thin-disk laser system oscillator that performs a record-high 350-watt average output laser beam power resulting in a new standard for the creation of more powerful fiber lasers. Herewith, ultrafast laser beam sources are at the center of fundamental scientific researches and industrial applications of fiber laser systems, including high-field physics experiments with attosecond temporal resolution to micrometer-accuracy machining of materials.

Nonetheless, repetition rates of several megahertz and average output powers of hundreds of watts remain still required from laser systems to put the envelope forward. The most promising way to performing such high-power laser beam sources is to produce them by increasing the power output from fiber laser oscillators rather than applying multi-stage amplifiers because of their complexity. The thing is that power increasing results in reliable and potentially cost-effective fiber laser systems.

The physicists have recently put the power-scaling approach to a new level. To be more precise, they offer a laser beam source that provides both the simplicity and high repetition rates of laser system oscillators with record-high average output power from this type of fiber laser. The researchers use a thin-disk laser system oscillator as the base, “where the gain medium, the material in which the quantum processes leading to lasing take place, is shaped like a disk of around 100 micrometers thin”.

The thing is that the shape of such laser systems provides a relatively big surface area that favors cooling. Nevertheless, thermal effects remain the main disadvantage because of which the record output laser beam power was considered to be at 275 watts. At present, several advances in thin-disk laser technology enable the physicists to reach an average output power of 350 watts, with laser beam pulses that are only 940 femtoseconds long, they have an energy of 39 microjoules and repeat at a 8.88-megahertz rate. It should be noted that these parameters are the subject of constant interest in both scientific and industrial applications.

Finally, the physicists have succeeded in the development of a technique that allows several passes of the pump laser beam through the gain medium without inflicting detrimental thermal effects, therefore, decreasing the stress on the relevant components. The opportunity to check thermal effects make it possible to overcome the limitations of the 275-W level. Moreover, it is planned to use these laser system oscillators for the future achievement of 500 W or even higher.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry. 

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily-automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

read more
editorUltrashort-pulse laser system oscillators

Ultrafast laser beam pulses demonstrate a previously unseen matter phase

on November 15, 2019

light-579290_640A team of researchers from the U.S. performs experimentы with ultrafast laser beam pulses that allow creating a previously unseen phase of matter. For instance, adding energy to any material almost always change its structure. However, new experiments by laser systems demonstrate the opposite: “when a pattern called a charge density wave in a certain material is hit with a fast laser beam pulse, a whole new charge density wave is created—a highly ordered state, instead of the expected disorder.”

The thing is that such laser technology may reveal hidden features in materials of all types. The researchers perform the experiment with ultrafast laser beam pulses by applying lanthanum tritelluride material that naturally changes into a layered structure. It should be noted that a wavelike pattern of electrons in high- and low-density areas creates spontaneously in the material, however, it is limited by a single direction within him.

Herewith, an ultrafast burst of laser beam light (less than a picosecond long) leads to the obliteration of the previous pattern and the creation of a new one. To be more precise, the novel pattern produced in the result of the laser system process is regarded as something that has never been observed before in this material. This pattern appears for only a flash, vanishing within a few more picoseconds.

It is not a discovery that matter can have two possible competitive states and that the dominant mode can suppress alternative modes. The laser technology, in its turn, reveals that different types of matter can have latent states lurking unseen if a technique will be found to restrain the dominant state. It is possible to see by using ultrafast laser beam pulses at these competing states that are considered to have equivalent crystal structures due to the predictable, orderly patterns of their subatomic constituents.

The opportunity of laser systems that suppressing other phases of matter may reveal completely new material features uncovers numerous new areas of application. This is the reason why it is highly necessary to discover material phases that can only be out of equilibrium. To be more precise, what is meant here is material states that would never be achieved without a technique, such as this system of laser beam pulses, for suppressing the dominant phase.

Traditionally, researchers transform chemical changes, or pressure, or magnetic fields to change the material phase, while now they apply laser beam light to perform these transformations. Finally, the results of laser technology may enable to better understand the role of phase competition in other systems resulting in discovering higher-temperature superconductors and finding out why superconductivity appears in some materials at relatively high temperatures.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorUltrafast laser beam pulses demonstrate a previously unseen matter phase

Production of optical fiber preforms by 3D printing

on November 8, 2019

3d-791205_640A new technique of 3D printing application has been developed to produce optical fiber preforms that are commonly used as the backbone of the global telecommunications network. It is planned that this fiber optic technology allows not only making the optical fiber production easier but also open up new designs and applications that were impossible before.

The thing is that the traditional creation of silica optical fibers is based on “the labor-intensive process of spinning tubes on a lathe, which requires the fiber’s core or cores to be precisely centered”. Nevertheless, modern fiber optic technology does not require to center the fiber geometry resulting in the overcome of some optical fiber limitations in design and the reduction of manufacture cost.

A group of researchers from Australia has succeeded to make the first silica optical fibers by 3D printing. It should be noted that the 3D printing technique for optical fiber manufacturing may change the entire approach to fiber optic design and goal. For instance, it is possible to enlarge the applications of fiber optic sensors that significantly overpass their electronic equivalents relatively to longevity, calibration, and maintenance, however, fiber sensors haven’t been widely employed because of their expensive fabrication.

Herewith, the developed fiber optic technology is based on the previous work in which polymer material was applied to show the first optical fiber produced from a 3D printed preform. Nevertheless, this research faced several material problems including the high temperatures (higher than 1900 °C) required to 3D print optical fibers.

New optical fibers are produced by unique heating step (debinding) to take away the polymer and leave behind only the silica nanoparticles, which are put together by intermolecular forces. Then the nanoparticles transform into a solid structure by raising the temperature, therefore, it could be installed into a draw tower where it is heated and pulled to produce the optical fiber.

Finally, the new technique enables the researchers to create a preform equivalent of a traditional optical fiber that could be employed to produce multi- or single-mode fibers, depending on drawing conditions. The researchers confirm that this fiber optic technology demonstrates great results and can be used for a large variety of fiber optic material processing. Additionally, the production of optical fiber preforms by 3D printings is regarded to be a possible opportunity to replace the traditional methods of making optical fibers. Thus, not only fabrication and material costs of fiber optics but also labor costs will be reduced.

Optromix is a provider of top quality special fibers and broad spectra optical fiber solutions. The company delivers the best quality special fibers and fiber cables, fiber optic bundles, spectroscopy fiber optic probes, probe couplers and accessories for process spectroscopy to clients. If you have any questions or would like to buy an optical fiber product, please contact us at info@optromix.com

read more
editorProduction of optical fiber preforms by 3D printing

Fiber laser system en bloc resection of bladder tumors

on November 1, 2019

surgery-1807541_640Bladder cancer is considered to be the second most widespread urological cancer in adults and the seventh most general diagnosis of cancer in males. This type of cancer is traditionally treated by fiber laser transurethral resection. The operating principle of such a fiber laser system is based on the surgical removal of a bladder tumor from the bladder wall. 

Compared to fiber laser technology, traditional techniques face several morphological difficulties and complications, for instance, possible cancer recurrence (about 60-70% of cases), detrusor muscle presence (30-60%), inability to precisely separate the tumor causing to lamina propria damage, potential tumor seeding, or incomplete resection.

Nowadays the thulium technology, based on fiber laser systems, is regarded as a new laser technique in prostate ablation onto the urological sphere. The fiber laser technology provides such benefits as the opportunity to transmit a high energy output from a relatively small optical fiber core. Compared to Holmium laser systems operating at infrared wavelengths more than 2.000 nm, “Thulium fiber lasers operate at wavelengths of 1,908 nm and 1,940 nm, two wavelengths that match more closely with water’s optimal absorption peak”.

Thus, the fiber laser system provides a much more accurate resections of bladder cancer. The surgery by fiber lasers has been already tested and demonstrates great results. To be more precise, fiber laser technology shows its high efficiency in cases with complicated tumor locations and abnormal anatomies, for example, bladder dome tumors, tumors placed in close proximity to the ureteral orifice, and tumors that cover the ureteral orifice.

Additionally, clinical and laboratory researches of fiber lasers improve the morphological diagnostic criteria for NMIBC and give the required information about the specimen quality after thulium laser system resection and traditional transurethral resection of bladder tumor techniques.

Finally, the en bloc resection technique by fiber laser system enables to minimize coagulation of the tumor base and urothelium along resection margins resulting in the complete impossibility of any tumor mass coagulation. Also, it should be mentioned that during fiber laser surgery all bladder layers remain saved from an intact specimen, therefore, saving the differentiation from the tumor and its base. Such fiber laser technology plays a crucial role, since laser system surgery may enable to choose a more correct and appropriate treatment strategy for bladder cancer diagnoses in the future.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorFiber laser system en bloc resection of bladder tumors

Lithography application of ultrafast fiber lasers for smart cloth

on October 25, 2019

laser-2819143_640Recently waterproof energy-storing cloth for smart garments was developed on the basis of carbon-dioxide and ultrafast fiber lasers. Researchers from Australia offer cost-efficient and scalable fiber laser technology that allows fast fabricating textiles with energy-storage devices installed inside them. The technology based on CO2 laser system and ultrafast laser can produce a 10 × 10 cm smart-textile patch that has such benefits as waterproofing, stretchability, herewith, it can be easily integrated with energy-harvesting technologies.

To be more precise, the fiber laser technology promotes graphene supercapacitors (energy-storage devices) to be printed by laser systems directly onto textiles such as nylon. The principle of the technology is based on the combination of a supercapacitor printing by a fiber laser and a photovoltaic cell to create an efficient, washable, self-powering smart fabric. Additionally, the researchers confirm that such a laser system is able to overcome the main disadvantages of current e-textile energy-storage technologies.

It should be noted that the popular smart-fabrics industry finds numerous laser applications in wearable devices for “the consumer, healthcare, and defense sectors, including monitoring vital signs of patients, tracking the location and health status of soldiers in the field, and monitoring pilots and drivers for fatigue”. The most widespread laser system application is considered to be laser lithography.

The thing is that the researchers put an elastomer solution (polydimethylsiloxane) on one side of nylon textile while a solution of graphene oxide and binder is coated onto the other and dried to form a film 3 μm thick. Then CO2 laser and femtosecond laser is used to form the fabric. The carbon laser performs photothermal reduction, while the ultrafast fiber laser achieves a combination of photothermal and photochemical reduction. Thus, the researchers succeeded to produce supercapacitor electrodes 10 μm thick over an area of 100 cm2 with an interelectrode distance of 80 μm with the help of fiber laser systems.

Herewith, the laser beam power of 4.5 W up to 8 W is used for the photoreduction process. Finally, the researchers discovered that after washing and drying the resulting graphene-enhanced cloth 50 times in commercial laundering machines, the electrical conductivity of the thin film, produced by CO2 and ultrafast fiber lasers, remains virtually unchanged compared with its initial state.

It is planned that the fiber laser technology allows real-time storage of renewable energy for e-textiles, as well as a faster roll-to-roll fabrication based on multifocal fabrication and machine learning techniques. If you are looking for a fiber laser of high beam quality, you should choose the Optromix company.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorLithography application of ultrafast fiber lasers for smart cloth

Factors that influence the choice of fiber laser systems

on October 11, 2019

fiber-3821957_640It should be noted that a laser system with higher power does not mean the opportunity to do things a much lower power fiber laser system will not. The application of Class 4 laser systems of 0.5 W of power is the ideal solution for laser technology treatment in clinics.

To be more precise,  photobiomodulation therapy or low-level fiber laser therapy requires a sufficient quantity of laser beam light energy into injured tissues. The thing is that skin scatters and reflects most of the laser beam light that it is exposed to resulting in great challenges.

Herewith, specific wavelengths of laser beam light energy have the skin penetration ability higher than others. Nonetheless, additional barriers (hemoglobin, oxyhemoglobin, fat, and water) are distinguished under the skin that also catches or reflects more of the remaining laser beam light. Thus, it is necessary to pay careful attention to the choice of therapeutic wavelengths to maximize a fiber laser system’s efficiency.

Also, laser systems with the ideal laser beam wavelengths to penetrate the tissue and a low level of overall power allow efficient treatment of small areas and take 30 minutes or even longer. The possible solution to the low power of fiber lasers and the requirement to treat a large area is substantially increasing treatment time to maintain the necessary dosage.

Such a disadvantage of Class 3b laser systems is considered to be the main reason a lot of early fiber laser research demonstrated amazing results. Compared to Class 3, Class 4 fiber laser systems are used in photobiomodulation, where the previous lasers leave off at 0.5W of laser beam power.

The higher power of laser systems enables “sufficient laser beam energy to be passed onto nerve, muscle, ligament, tendon, and capsular tissue in a reasonable amount of time”. The thing is that the usual therapy session takes from 2 to 6 minutes, which is acceptable in a clinical setting.

Fiber laser systems of high beam quality offer such benefit as the versatility to treat injured tissue in multiple areas in a given session, which greatly improves the overall effectiveness of the laser when adding it to a plan of care. Nevertheless, Class 4 laser systems commonly have a higher cost than Class 3 laser technology.

Finally, it is necessary to take into consideration the following factors when choosing fiber laser products: the laser device manufacturing, warranty parameters, application heads and a type of available customer service to learn the staff on how to use effectively the laser system after it is purchased. Although the fiber laser cost plays a crucial role, careful consideration should be given to the mentioned factors.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorFactors that influence the choice of fiber laser systems

Surgery of breast tumors by fiber laser systems does not leave scars

on October 4, 2019

pink-ribbon-3713632_640Fiber laser system allows women to have surgery procedure of breast tumor removal without scars that takes less than an hour and leaves only a tiny puncture mark. Thus, a new laser system treatment for breast cancer was recently approved for application in the UK, and it is planned to use the fiber laser surgery in other countries.

To be more precise, the surgery by the fiber laser system requires just local anesthetic. Frances Barr from Bristol became one of the first women in Britain to be subjected to a new laser system surgery for breast cancer. Compared to traditional surgery with a general anesthetic, laser technology is based on the use of local anesthetic.

The principle of fiber laser operation is based on a fine, hollow needle that is inserted through the breast tissue into the tumor, herewith, a fiber probe is brought through the needle and a hot laser beam attacks the tumor. It should be noted that after the injection of local anesthetic into the front of the breast, then the doctor applies a handheld ultrasound monitor to guide a needle towards the tumor.

When the tip of the needle achieves it, the fiber laser probe is inserted to defeat  the cancerous tissue, herein, the patient is awake during the process. The woman said that she felt some inconveniences when the needle forced its way in, however, this was not painful. The dead tissue was also removed after the laser system surgery and no trace of cancer left. The laser technology succeeded.

Compared to a lumpectomy procedure, fiber laser treatment does not present any major risks, however, the procedure can not be currently used for breast tumors bigger than 20 mm in diameter. Nonetheless, the cancer surgery by fiber laser system is regarded to be particularly effective for older women with small breast tumors who may be less able to stand the traditional surgery. Also, the doctors have to be certain that the laser system treatment removes all cancer.

Every year about 25.000 women in the UK are exposed to a lumpectomy procedure for breast cancer, generally when the tumor has not spread. Conventional techniques are useful, however, leave scars that may become infected (1.5-10%). The new laser technology, in its turn, offers the same results, but without the collateral damage because of the tiny size of the entry point. 

The surgery by fiber laser system takes only ten minutes to achieve the required laser beam temperature of 60 °C to 100 °C. Additionally, the laser system has heat fiber sensors that detect enough temperature eliminating the risk of damage to healthy tissue. Finally, only two tiny puncture marks are left, and it is not necessary to keep a patient at the hospital. Herewith, the main benefit of fiber laser treatment is the opportunity to repeat the process if scans reveal it didn’t destroy all of the tumors the first time around.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorSurgery of breast tumors by fiber laser systems does not leave scars

Organic laser system enlarges its applications

on September 27, 2019

rays-1200805_640According to the last research, now it has become possible to design accessible laser systems that are able to emit laser beams of a wide range of colors resulting in new fields of applications from communications and sensing systems to displays. Thus, researchers from Japan have developed an optically pumped organic thin-film laser module that allows continuously producing laser beam light for 30 ms that is about 100 times longer than previously used laser devices.

Compared to conventional inorganic laser systems (used in CD drives and laser pointers), the principle of organic thin-film laser module’s operation is based on a thin layer of organic molecules as the laser medium that emits laser beams by producing and intensifying light during the excitement of an energy source. Herewith, an intense ultraviolet laser beam light from an inorganic laser system is regarded as the energy source.

Additionally, the organic laser system is highly potential because it offers such an advantage as the opportunity to more easily reach colors that are virtually impossible with inorganic laser devices. It should be noted that “by designing and synthesizing molecules with new structures, laser beam emission of any color of the rainbow is possible.” Although organic thin-film laser systems have been studied for a long time, such features as degradation and loss processes have significantly restricted the duration of laser beam emission.

Nonetheless, the researchers succeeded to overcome the mentioned challenges and enlarge the duration of laser system process by unifying three strategies:

  • the use of an organic fiber laser medium with triplet excitons that absorb a various color of laser beam light than that produced by the laser system to decrease main losses originating from the absorption of emission by packets of energy.
  •  the problem of thermal degradation is solved by manufacturing the laser devices on a crystalline silicon wafer and gluing a piece of sapphire glass on top of the organic laser system medium with a special polymer. The thing is that the silicon and sapphire material, applied in the organic thin-film laser module, are considered to be good heat conductors that reduce the heat level in the laser devices.
  • the strategy of optimization of a frequently used grating structure or mixed-order distributed feedback structure installed under the organic laser system medium to achieve optical feedback, the input energy required to keep the laser devices allows reducing to new lows.

These laser systems can be used in extreme environments, that is why searching for new laser techniques  to take away any inefficiencies and prevent laser devices from overheating. Moreover, the combination of the organic laser modules with inorganic ones enables to produce colors that are difficult to create employing a conventional type of lasers, with applications in process spectroscopy, communications, displays, and sensing systems.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

read more
editorOrganic laser system enlarges its applications