Nowadays new fiber laser technology allows transmitting multikilowatt power, ultrashort pulse durations, repetition rates up to 1 GHz, and high laser beam quality in a compact version. The thing is that the ultrafast laser system with pulse durations in the femtosecond and picosecond range is widely used in numerous industrial processes.
Benefits of these fiber lasers provided high-quality, virtually athermal materials processing combining with developments in fiber laser technology, process development, laser beam handling, and delivery, enlarge fields for many advanced scientific and industrial applications. Nevertheless, tapered optical fibers provide high laser beam power with perfect beam features in a space-effective format, herewith, at not expensive production costs that are slightly more than traditional optical fibers.
Thus, these ultrafast fiber laser systems offer fast industrial performance by transmitting fast investment returns from high processing speed and accuracy. It should be noted that the rapid rise in output laser beam power due to rare-earth-doped optical fiber allows designing new fiber optic systems with perfect performance (high laser beam quality, overall efficiency, and flexibility in operating wavelength and radiation format).
The thing is that current fiber optic technologies promote creating new configurations as well, however, the cost of solid-state gain material is high, combined with thermal management challenges cause crucial obstacles to its widespread application. The popularity of pulsed laser systems increases every day. Solid-state, disk, and fiber lasers are considered to be the most potential versions for high-average-power generation, herein, fiber laser systems are in advance.
Compared to solid-state and disk laser systems, fiber lasers provide such advantages as compactness, robustness, efficiency, ease of thermal management, and reliable laser beam quality. Additionally, fiber laser systems have greatly lower production and maintenance costs beneficial for pico- and femtosecond high-repetition-rate kilowatt-level laser beam development. Modern high-average-power fiber lasers usually apply chirped-pulse amplification.
Nevertheless, even amplifiers based on fiber optic technology can provoke very high optical peak intensities leading to detrimental nonlinear laser beam pulse distortion or even destruction of the gain medium or other optical fiber elements. Moreover, there are various nonlinear effects (self-phase modulation, stimulated Raman scattering, mode instabilities, and poor output laser beam quality) that increase in pulsed high-power laser systems limiting their performance. The promising solution is the increase in the core diameter of the optical fiber.
Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com