Skip to content

Laser Systems oscillators for more powerful fiber lasers

Laser Systems oscillators for more powerful fiber lasersPhysicists from Switzerland have developed a sub-picosecond thin-disk laser system oscillator that performs a record-high 350-watt average output laser beam power resulting in a new standard for the creation of more powerful fiber lasers. Herewith, ultrafast laser beam sources are at the center of fundamental scientific researches and industrial applications of fiber laser systems, including high-field physics experiments with attosecond temporal resolution to micrometer-accuracy machining of materials.

Nonetheless, repetition rates of several megahertz and average output powers of hundreds of watts remain still required from laser systems to put the envelope forward. The most promising way to perform such high-power laser beam sources is to produce them by increasing the power output from fiber laser oscillators rather than applying multi-stage amplifiers because of their complexity. The thing is that power increasing results in reliable and potentially cost-effective fiber laser systems.

The physicists have recently put the power-scaling approach to a new level. To be more precise, they offer a laser beam source that provides both the simplicity and high repetition rates of laser system oscillators with record-high average output power from this type of fiber laser. The researchers use a thin-disk laser system oscillator as the base, “where the gain medium, the material in which the quantum processes leading to lasing take place, is shaped like a disk of around 100 micrometers thin”.

The thing is that the shape of such laser systems provides a relatively big surface area that favors cooling. Nevertheless, thermal effects remain the main disadvantage because of which the record output laser beam power was considered to be at 275 watts. At present, several advances in thin-disk laser technology enable the physicists to reach an average output power of 350 watts, with laser beam pulses that are only 940 femtoseconds long, they have an energy of 39 microjoules and repeat at an 8.88-megahertz rate. It should be noted that these parameters are the subject of constant interest in both scientific and industrial applications.

Finally, the physicists have succeeded in the development of a technique that allows several passes of the pump laser beam through the gain medium without inflicting detrimental thermal effects, therefore, decreasing the stress on the relevant components. The opportunity to check thermal effects makes it possible to overcome the limitations of the 275-W level. Moreover, it is planned to use these laser system oscillators for the future achievement of 500 W or even higher.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high-powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry.

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com