Laser Beam diodes create deep-UV light

Laser beam diodes create deep-UV lightA team of scientists from Japan has manufactured a laser beam diode that allows emitting deep-ultraviolet light. To be more precise, the developed laser system can produce the shortest laser beam wavelength in the world, it is only 271.8 nm under pulsed current injection at room temperature.

It should be noted that previous versions of similar fiber lasers succeeded to achieve emissions only down to 336 nm. The potential applications of the new laser system include disinfection in health care, treating skin conditions, for instance, psoriasis, and analyzing gases and DNA.

The base of the fiber laser system is made of a high-quality aluminum nitride (AlN) substrate that enables to escape of the limitations connected with lower quality AlN. The thing is that the AIN quality is considered to influence the efficiency of a fiber laser diode’s active layer in converting electricity into laser beam light energy.

The team confirms that a quantum well separates p-type and n-type layers in the laser system. The operating principle of the developed fiber laser is based on “electric current that is passed through a laser beam diode, and positively charged holes in the p-type layer and negatively charged electrons in the n-type layer flow toward the center to combine, releasing energy in the form of photons.”

Thus, scientists have developed the quantum well for the fiber laser so that it could produce deep UV light. The p- and n-type layers consist of aluminum gallium nitride (AlGaN). Herewith, every side of the p- and n-type layers in the laser system are surrounded by cladding coatings made of aluminum gallium nitride as well. The cladding is produced by using the process of doping.

Doping is regarded as a way that changes a material’s properties. The team also claims that the aluminum gradient of laser beam diodes increases the flow of positively charged holes. Finally, it was discovered that the technique of the polarization doping of the p-side cladding layer implied that a pulsed electric current of “remarkably low operating voltage” of 13.8 V in the fiber laser system was required for the emission of the UV wavelength.

Nowadays the team of scientists plans to perform advanced joint research to reach continuous room temperature deep-UV lasing for the production of UV-C semiconductor laser system products that can greatly improve the current benefits leading to the appearance of new promising applications in various areas.

If you are looking for a compact highly efficient laser system, the Optromix company is ready to manufacture it. Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high-powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry.

Moreover, our fiber lasers are exceptionally light and compact and can be embedded in other devices or used in mobile applications. Our company offers single-mode Erbium lasers and Ytterbium lasers as well as single-frequency fiber lasers (similar to DFB lasers), wavelength-tunable fiber lasers systems, and unique DUV fiber laser system.

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com