Fiber Laser Systems en bloc resection of bladder tumors

Fiber Laser Systems en bloc resection of bladder tumorsBladder cancer is considered to be the second most widespread urological cancer in adults and the seventh most general diagnosis of cancer in males. This type of cancer is traditionally treated by fiber laser transurethral resection. The operating principle of such fiber laser systems is based on the surgical removal of a bladder tumor from the bladder wall.

Compared to fiber laser technology, traditional techniques face several morphological difficulties and complications, for instance, possible cancer recurrence (about 60-70% of cases), detrusor muscle presence (30-60%), inability to precisely separate the tumor causing to lamina propria damage, potential tumor seeding, or incomplete resection.

Nowadays the thulium technology, based on fiber laser systems, is regarded as a new laser technique in prostate ablation onto the urological sphere. The fiber laser technology provides such benefits as the opportunity to transmit a high energy output from a relatively small optical fiber core. Compared to Holmium laser systems operating at infrared wavelengths of more than 2.000 nm, “Thulium fiber lasers operate at wavelengths of 1,908 nm and 1,940 nm, two wavelengths that match more closely with water’s optimal absorption peak”.

Thus, the fiber laser system provides a much more accurate resection of bladder cancer. The surgery by fiber lasers has been already tested and demonstrates great results. To be more precise, fiber laser technology shows its high efficiency in cases with complicated tumor locations and abnormal anatomies, for example, bladder dome tumors, tumors placed in close proximity to the ureteral orifice, and tumors that cover the ureteral orifice.

Additionally, clinical and laboratory researches of fiber lasers improve the morphological diagnostic criteria for NMIBC and give the required information about the specimen quality after thulium laser system resection and traditional transurethral resection of bladder tumor techniques.

Finally, the en bloc resection technique by fiber laser system enables it to minimize coagulation of the tumor base and urothelium along resection margins resulting in the complete impossibility of any tumor mass coagulation. Also, it should be mentioned that during fiber laser surgery all bladder layers remain saved from an intact specimen, therefore, saving the differentiation from the tumor and its base. Such fiber laser technology plays a crucial role, since laser system surgery may enable specialists to choose a more correct and appropriate treatment strategy for bladder cancer diagnoses in the future.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Laser Beams demonstrate a previously unseen matter phase

Laser Beams demonstrate an unseen phase of matterA team of researchers from the U.S. performs experiments with ultrafast laser beam pulses that allow creating a previously unseen phase of matter. For instance, adding energy to any material almost always changes its structure. However, new experiments by laser systems demonstrate the opposite: “when a pattern called a charge density wave in a certain material is hit with a fast laser beam pulse, a whole new charge density wave is created—a highly ordered state, instead of the expected disorder.”

The thing is that such laser technology may reveal hidden features in materials of all types. The researchers perform the experiment with ultrafast laser beam pulses by applying lanthanum tritelluride material that naturally changes into a layered structure. It should be noted that a wavelike pattern of electrons in high- and low-density areas creates spontaneously in the material, however, it is limited by a single direction within him.

Herewith, an ultrafast burst of laser beam light (less than a picosecond long) leads to the obliteration of the previous pattern and the creation of a new one. To be more precise, the novel pattern produced in the result of the laser system process is regarded as something that has never been observed before in this material. This pattern appears for only a flash, vanishing within a few more picoseconds.

It is not a discovery that matter can have two possible competitive states and that the dominant mode can suppress alternative modes. The laser technology, in its turn, reveals that different types of matter can have latent states lurking unseen if a technique is found to restrain the dominant state. It is possible to see by using ultrafast laser beam pulses at these competing states that are considered to have equivalent crystal structures due to the predictable, orderly patterns of their subatomic constituents.

The opportunity of laser systems that suppress other phases of matter may reveal completely new material features uncovering numerous new areas of application. This is the reason why it is highly necessary to discover material phases that can only be out of equilibrium. To be more precise, what is meant here are material states that would never be achieved without a technique, such as this system of laser beam pulses, for suppressing the dominant phase.

Traditionally, researchers transform chemical changes, or pressure, or magnetic fields to change the material phase, while now they apply laser beam light to perform these transformations. Finally, the results of laser technology may enable us to better understand the role of phase competition in other systems resulting in discovering higher-temperature superconductors and finding out why superconductivity appears in some materials at relatively high temperatures.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Laser Systems oscillators for more powerful fiber lasers

Laser Systems oscillators for more powerful fiber lasersPhysicists from Switzerland have developed a sub-picosecond thin-disk laser system oscillator that performs a record-high 350-watt average output laser beam power resulting in a new standard for the creation of more powerful fiber lasers. Herewith, ultrafast laser beam sources are at the center of fundamental scientific researches and industrial applications of fiber laser systems, including high-field physics experiments with attosecond temporal resolution to micrometer-accuracy machining of materials.

Nonetheless, repetition rates of several megahertz and average output powers of hundreds of watts remain still required from laser systems to put the envelope forward. The most promising way to perform such high-power laser beam sources is to produce them by increasing the power output from fiber laser oscillators rather than applying multi-stage amplifiers because of their complexity. The thing is that power increasing results in reliable and potentially cost-effective fiber laser systems.

The physicists have recently put the power-scaling approach to a new level. To be more precise, they offer a laser beam source that provides both the simplicity and high repetition rates of laser system oscillators with record-high average output power from this type of fiber laser. The researchers use a thin-disk laser system oscillator as the base, “where the gain medium, the material in which the quantum processes leading to lasing take place, is shaped like a disk of around 100 micrometers thin”.

The thing is that the shape of such laser systems provides a relatively big surface area that favors cooling. Nevertheless, thermal effects remain the main disadvantage because of which the record output laser beam power was considered to be at 275 watts. At present, several advances in thin-disk laser technology enable the physicists to reach an average output power of 350 watts, with laser beam pulses that are only 940 femtoseconds long, they have an energy of 39 microjoules and repeat at an 8.88-megahertz rate. It should be noted that these parameters are the subject of constant interest in both scientific and industrial applications.

Finally, the physicists have succeeded in the development of a technique that allows several passes of the pump laser beam through the gain medium without inflicting detrimental thermal effects, therefore, decreasing the stress on the relevant components. The opportunity to check thermal effects makes it possible to overcome the limitations of the 275-W level. Moreover, it is planned to use these laser system oscillators for the future achievement of 500 W or even higher.

Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high-powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry.

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

Ytterbium Doped Fiber Lasers for spontaneous emission

Ytterbium doped fiber lasers spontaneous emissionA team of researchers presents a new random noise pulsed regime provided by a ytterbium doped fiber laser. Herewith, the output of the ytterbium laser complies with the photon statistics common to narrowband amplified spontaneous emission resulting in the noise pulsing in terms of probability density and autocorrelation functions. The new fiber laser technique demonstrates that the increase of ytterbium doped laser leads to a prominent decrease in the regime’s coherence time (from few ns to tens ps).

Fiber laser systems are regarded as highly promising tools that have a wide range of commercial applications. Fiber lasers are used as light sources in fully fiberized optical schemes with no free-space components. Herein, they offer a high level of optical and electrical to optical conversion efficiency. Additionally, fiber laser systems have various operating regimes, “characterized by narrow (from a tens Hz) to a very large optical band, in continuous-wave (CW) and pulsed regimes including Q-switched, mode-locking and soliton operations where the pulse width is ranged from hundreds of nanoseconds down to tens of femtoseconds”.

Ytterbium doped fiber lasers are considered to have such a benefit as an excellent power budget thanks to the absence of excited-state absorption. Nevertheless, ytterbium doped lasers have a disadvantage that influences their efficiency: there is a specific broadening of the laser line in the case when the cavity of fiber laser is made from FBG couplers. Thus, the partial leakage of fiber laser power occurs on highly reflective fiber Bragg gratings.
The output power of ytterbium doped fiber lasers may vary from several watts to tens kW or even a few hundred kW depending on single-mode and multimode operations. It should be noted that the low cavity Q-factor of ytterbium lasers causes high fiber laser gain, and the regime of the laser system is changed on random kW pulses resulting in Brillouin scattering.

The researchers confirm that the operation of ytterbium doped lasers happens in a noise pulse regime with random magnitudes and widths (not in the CW regime). Moreover, there is a dependence between the fiber laser photon statistics and laser beam power (and hence on laser linewidth), thus, its behavior seems similar to narrowband ASE. For instance, several high-amplitude noise events with low probability achieve powers more than the mean laser beam power.

Finally, the developed laser system has been already tested. It shows that the laser spectrum’s width becomes higher with increasing output power. While the rate of the ytterbium laser process at lower output powers is lower than at higher one. Taking into consideration the fact that the nonlinear optical fiber length is considerably shorter than the cavity one.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Laser Systems emit terahertz radiation for the U.S. army

Laser Systems emit terahertz radiation for the armyA team of researchers from Boston has developed a new terahertz radiation source with coveted frequency adjustment capability based on quantum cascade laser systems (QCL). Such a laser system has a compact size and it allows the development of futuristic communications, security, biomedical, and astronomical imaging systems.

It should be noted that terahertz electromagnetic frequencies emitted by fiber lasers have been widespread for their range of applications because these laser systems offer such advantages as high bandwidth, high resolution, long-range sensing, and the ability to visualize objects through materials. Nevertheless, the costliness, bulk, inefficiencies, and lack of tunability of traditional terahertz laser beam sources have limited growing markets.
Thus, this new combined terahertz laser beam emitter promotes future technologies from T-ray imaging in airports and space observatories to ultrahigh-capacity wireless connections. To be more precise, current fiber laser systems are considered to have limited tunability (less than 15 to 20% of the main frequency), that is why terahertz radiation is rarely used.

The researchers confirm that the new laser system helps open up this spectral region resulting in a revolutionary impact. The laser technology is based on a compact tunable semiconductor laser system, the quantum cascade laser (QCL) that is frequently used for chemical sensing and trace gas analysis. The thing is that the QCL laser system emits mid-infrared light, herewith, in this spectral region, most gases (low concentrations of molecules) can be determined by their specific absorption fingerprints.

According to researchers, “Terahertz waves could be emitted with high efficiency from gas molecules held within cavities much smaller than those currently used on the optically pumped far-infrared (OPFIR) laser system — one of the earliest sources of terahertz radiation”.

Nevertheless, the OPFIR laser systems are similar to all traditional terahertz laser beam sources, that is why they are regarded as inefficient with limited tunability. The change of the OPFIR laser on the quantum cascade laser system significantly increases the terahertz tuning range, therefore, the developed laser module has wider tunability now.

This laser system has been already tested and demonstrates the opportunity to tune the terahertz output to emit 29 direct laser beam transitions between 0.251 and 0.955 THz. The laser technology is universal, and it can be used to detect different gases. It is planned to use the developed laser system to observe skyward and determine unknown spectral features in the terahertz region.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Fiber Lasers as a tool for the treatment of kidney stones

Fiber Lasers as the treatment of kidney stone diseaseThe treatment of kidney stones is regarded as a painful process, however, specialists from the U.S. have developed a laser technology to make the therapy easier for patients in a way never done before. According to specialists, a two-month test makes the medical center the first in North America to apply pulsed fiber lasers to take away kidney stones.

The development of this laser technology takes a couple of years on project. That is why the specialists try to make Ohio State the first to employ it, as it already had some experience. To be more precise, specialists started developing the opportunity of applying this type of fiber laser system for urology in early 2015. By mid-2017, certain benefits of the new laser technology were over to the conventional state of the art.

The fiber laser leads to kidney stones’ breakage into tiny pieces. Herewith, such a laser system is considered to be more consistent compared with traditional laser technology. The operating principle is based on laser beam energy that breaks up the stones: “Once we get to the stone, the laser beam energy is delivered through an optical fiber that’s brought into contact with the stone. Once you’re touching the stone, activate the fiber laser system. And it delivers pulses of energy to the stone that breaks it up.”

The main benefit of such fiber laser treatment is a short time of breakage resulting in less required time under anesthetic and a faster recovery for patients. The thing is that the previous laser systems applied for kidney stone procedures are dated. They have been used for about 20 years and had numerous limitations. While modern pulsed fiber lasers are one of the biggest breakthroughs in urology. The developed fiber laser meets the scientist’s expectations. It allows breaking up really big stones that were difficult to treat with the older laser system.

Additionally, there is no often a need for stents because the new fiber laser system enables to efficiently break the stones into tiny parts and dust. It should be noted that a stent is a temporary tube between the kidney and the bladder that helps the kidney drain. Herewith, it provides discomfort to patients and requires an additional procedure of its removal.

Also, the pulsed fiber laser offers other advantages for medical staff, for instance, it is smaller and more portable than the previous model that required a special outlet in operating rooms. The main goal of fiber laser development is to help physicians get better clinical outcomes for patients. Thus, the laser system is planned to be used in areas of the hospital where traditionally haven’t been used before.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Laser Beam diodes create deep-UV light

Laser beam diodes create deep-UV lightA team of scientists from Japan has manufactured a laser beam diode that allows emitting deep-ultraviolet light. To be more precise, the developed laser system can produce the shortest laser beam wavelength in the world, it is only 271.8 nm under pulsed current injection at room temperature.

It should be noted that previous versions of similar fiber lasers succeeded to achieve emissions only down to 336 nm. The potential applications of the new laser system include disinfection in health care, treating skin conditions, for instance, psoriasis, and analyzing gases and DNA.

The base of the fiber laser system is made of a high-quality aluminum nitride (AlN) substrate that enables to escape of the limitations connected with lower quality AlN. The thing is that the AIN quality is considered to influence the efficiency of a fiber laser diode’s active layer in converting electricity into laser beam light energy.

The team confirms that a quantum well separates p-type and n-type layers in the laser system. The operating principle of the developed fiber laser is based on “electric current that is passed through a laser beam diode, and positively charged holes in the p-type layer and negatively charged electrons in the n-type layer flow toward the center to combine, releasing energy in the form of photons.”

Thus, scientists have developed the quantum well for the fiber laser so that it could produce deep UV light. The p- and n-type layers consist of aluminum gallium nitride (AlGaN). Herewith, every side of the p- and n-type layers in the laser system are surrounded by cladding coatings made of aluminum gallium nitride as well. The cladding is produced by using the process of doping.

Doping is regarded as a way that changes a material’s properties. The team also claims that the aluminum gradient of laser beam diodes increases the flow of positively charged holes. Finally, it was discovered that the technique of the polarization doping of the p-side cladding layer implied that a pulsed electric current of “remarkably low operating voltage” of 13.8 V in the fiber laser system was required for the emission of the UV wavelength.

Nowadays the team of scientists plans to perform advanced joint research to reach continuous room temperature deep-UV lasing for the production of UV-C semiconductor laser system products that can greatly improve the current benefits leading to the appearance of new promising applications in various areas.

If you are looking for a compact highly efficient laser system, the Optromix company is ready to manufacture it. Optromix is a manufacturer of laser systems, optical fiber sensors, and optical monitoring systems. We develop and manufacture a broad variety of fiber lasers, high-powered fiber lasers, and other types. We offer simple laser products, as well as sophisticated fiber laser systems with unique characteristics, based on the client’s inquiry.

Moreover, our fiber lasers are exceptionally light and compact and can be embedded in other devices or used in mobile applications. Our company offers single-mode Erbium lasers and Ytterbium lasers as well as single-frequency fiber lasers (similar to DFB lasers), wavelength-tunable fiber lasers systems, and unique DUV fiber laser system.

We manufacture laser modules using our technologies based on the advanced research work and patents of the international R&D team. Laser processes are of high quality, high precision, easily automated manufacturing solutions that provide repeatability and flexibility. If you have any questions or would like to buy a fiber laser system, please contact us at info@optromix.com

Annual laser system market review and forecast for 2021

Laser System market review and forecastAlthough at uneven rates, different fiber laser markets continue to enlarge fighting a slowdown in manufacturing and an uncertain political climate. It is a fact that the 2020 year was challenging for numerous segments of laser system markets. Fiber laser manufacturers faced challenging economic and political influences and also experienced the impact of trade barriers, lockdown, etc.

It should be noted that some fields of laser applications or types of laser systems were affected, while other fiber laser systems succeeded and look even better for the future. The thing is that every segment of the laser market differs from each other, consequently, it has its way. The experts claim that the overall annual estimated revenue growth has grown by 8.8% in 2020. The good news is that according to the forecasts for the laser system market in 2021 we can expect a revenue growth rate of 15.5%.

The main segments of laser markets are the following:

  • Materials Processing and Lithography when laser technology is applied for various types of metal processing. For instance, welding, cutting, annealing, drilling. Additionally, such fiber lasers are useful for semiconductor and microelectronics manufacturing, marking of all materials, and other materials processing.
  • Communications and optical storage that consist of laser system diodes employed in such spheres as telecommunications, data communications, and optical storage applications, including pumps for optical fiber amplifiers.
  • Scientific research and military – fiber laser systems for fundamental R&D. To be more precise, what is meant here is “universities and national laboratories, and new and existing military applications, such as rangefinders, illuminators, infrared countermeasures, and directed-energy weapons research.”
  • Medical and aesthetic areas where fiber lasers find their applications in ophthalmology, surgical, dental, therapeutic, skin, hair, and other cosmetic uses.
  • Instrumentation and fiber optic sensors where laser systems operate inside biomedical tools, analytical devices (for example, spectrometers), wafer and mask inspection instruments, metrology devices, levelers, optical mice, gesture recognition, fiber lasers for LIDAR barcode readers, and other fiber sensors.
  • Entertainment, displays, and printing. The segment uses laser systems for performing light shows, games, digital cinema, front and rear projectors, pico projectors, and laser pointers. Herewith, laser technology for commercial pre-press systems and photofinishing remain popular alongside standard laser printers for consumer and commercial applications.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Temperature control is crucial for the fiber lasers industry

Temperature control for the fiber laser industryThermal stability plays a crucial role in industrial laser systems. Thus, the developers and manufacturers of fiber lasers have to design them to provide accurate heat regulation. Because inappropriate temperature control can lead to systemic or catastrophic consequences. The thing is that fluctuating temperatures significantly influence the capabilities of fiber laser systems and their lifespan, as well as production outcomes and customer satisfaction.

The risk of premature failures on laser systems increases, to be more precise, in the case of low-temperature control (when electronics are not being cooled properly). Numerous fiber lasers have water-cooled systems (the chiller), and the laser stops operating when any of those components go down. New chiller technologies have been developed to produce a more reliable chiller that fiber laser manufacturers can confidently install into all their systems.

The industry of chilling systems is considered to develop with the demands of the fiber laser industry. “Having a chiller that has the right heat removal, along with excellent stability and a level of quality and maintenance-free operation, is absolutely essential in keeping that fiber laser system up and running, so the customer’s making parts.” And power stability of laser systems is highly important for their reliable operation.

An ineffective chiller is going to have a great impact on a fiber laser with power stability. Additionally, it can influence the laser beam profile that can transform or warp things. In the case of water temperature increase, metal components of laser systems can be moving slightly more than it is required, and it can lead to the motion of the laser beam resulting in higher pointing instability.

The benefits of modern chilling systems for fiber laser systems include:

  • high quality;
  • less downtime;
  • ease of use.

Therefore, such innovations are required and vital in the evolution of the fiber laser industry. Some customers would not like to apply laser systems because of their maintenance that is regarded as the number one reason for failure. Nevertheless, now the problem is solved by a self-changing filter, due to which it is changed for up to two years.

New fiber laser technologies allow the development of a user-friendly recirculating chiller for various applications. Today it is possible to calculate the ideal pump, fluid, and power capacity for the chiller in fiber laser systems. Besides, the developers can produce a chiller considering your budget, herein, it will offer the highest value for customers.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com

Fiber lasers fight greenhouse gases

Fiber lasers fight greenhouse gases A team of researchers from Switzerland has developed a detecting system consisted of conventional fiber lasers and a photonic chip that allows tracking greenhouse and other gases by the application of a mid-infrared light source. The team uses a commercially affordable fiber laser system and combined it with a waveguide chip. That helps surely to emit laser beam lightwaves in the MIR spectrum.

According to the researchers, the developed laser system based on a new MIR laser beam light source enables them to determine greenhouse, other gases, and, moreover, molecules in a person’s breath. The thing is that the used fiber laser produces light in a specific wavelength range.

The operating principle of the fiber laser system is based on the laser beam that “is directed through a waveguide measuring 1 μm (0.001 mm) across and one-half mm in length. The waveguide can alter the frequency of the light as it passes through.” Herewith, several key aspects of the laser system’s design were improved. Among them are the waveguide geometry and material and the wavelength of the original laser beam source.

Thus, the researchers obtain a fiber laser system that is regarded as simple, yet efficient and reliable. Also, it becomes possible to adjust the wavelength of the laser beam light by tuning the geometry of the waveguide. The laser system is considered to be a turnkey, highly efficient, compact MIR laser beam source. It provides power levels sufficient for spectroscopy applications.

The system has been already tested on the detection of acetylene, a colorless and highly flammable gas, by absorption spectroscopy. The thing is that the fiber laser emits laser beam light in the MIR spectrum, saving 30% of the original signal strength. For instance, the waveguides pumped with a 2-μm fs fiber laser succeded a spectroscopic spectral region in the 3- to the 4-μm range, with up to 35% power conversion and mW-level output powers.

The researchers confirm that the developed fiber laser system sets a new benchmark for efficiency. Moreover, it is the first fully-integrated spectroscopic laser beam source resulting in no need for the laborious process of accurately aligning all the components in a standard laser system.

Finally, it was challenging to transport previous IR fiber laser systems for application since they include complex, damage-prone hardware. Modern laser systems can promote the development of additional miniaturized MIR technologies. It has a wavelength range that scientists rarely get to work with. Additionally, now the researchers have the opportunity to see on-chip detectors that is possible to be easily carried out into the field.

Optromix is a fast-growing fiber laser manufacturer and a vendor of optical fiber sensors and optical monitoring systems. The company offers fast turnkey solutions and creates sophisticated fiber laser systems for special purposes. Optromix uses only its technologies and develops a broad variety of fiber lasers. If you have any questions or would like to buy a laser system, please contact us at info@optromix.com